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Decay of quantum sensitivity due to three-body loss in Bose-Einstein condensates
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In view of the coherent properties of a large number of atoms, Bose-Einstein condensates (BECs) have a
high potential for sensing applications. Several proposals have been put forward to use collective excitations
such as phonons in BECs for quantum-enhanced sensing in quantum metrology. However, the associated
highly nonclassical states tend to be very vulnerable to decoherence. In this article, we investigate the effect
of decoherence due to the omnipresent process of three-body loss in BECs. We find strong restrictions for a wide
range of parameters, and we discuss possibilities to limit these restrictions.
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I. INTRODUCTION

After their first experimental realization [1,2] in 1995,
Bose-Einstein condensates (BECs) in ultracold atomic va-
por are now routinely created and manipulated in many
laboratories. Since then, experimentalists have gained a
significantly higher level of control over BECs through
technological and methodological advancements, including
low-temperature records in the sub-nK regime [3], creation
and manipulation on an atom chip [4,5], and sending BECs
to space [6], allowing fundamental research in a microgravity
environment.

In state-of-the-art technology, BECs are used for high-
precision measurements of forces [7–12] by means of
matter-wave interferometry, where the wave function of each
atom is split into two wave packets that are sent on different
paths and then brought into interference.

For optical interferometry, it is well known that one
may enhance the sensitivity by employing nonclassical (e.g.,
squeezed) states, which has been successfully implemented
in the gravitational wave detectors of the LIGO-Virgo col-
laboration [13–15], for example. More generally, quantum
metrology refers to the exploitation of quantum properties
(such as entanglement) in order to gain significantly higher
sensitivities for measurement technologies [16]. Quantum
enhanced sensing has also been proposed for matter-wave
interferometry [17] and other sensing applications of cold
atomic systems [18].

For cold atoms however, the strict conservation of their
total number poses restrictions on the available phase space
of quantum superpositions. Thus, it might be advantageous to
employ the quantum states of collective oscillations such as
phonon modes in the BEC.

First studies of collective oscillations in BECs were al-
ready performed in early experiments [19–21]. Highly excited
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quasiparticle states can be created with light pulses [22] and
periodic modulations of the trap potential [23,24]. Measure-
ment methods include self-interference of the Bose gas after
release from the trap denoted as heterodyning [22] or time-
of-flight measurements and in situ phase contrast imaging
[21,25]. A specific example of the utilization of collective
oscillations in BECs for sensing was the measurement of the
thermal Casimir-Polder force presented in [26,27].

Exploring the potential of BECs for sensing applications
further, it has been proposed to use collective oscillations in
BECs to measure the effect of space-time curvature on entan-
glement [28–30], for high-precision gravity sensing [31,32],
for detecting gravitational waves [33–37] and for testing grav-
itationally induced collapse models [38].

In order to detect extremely small effects (such as the
gravitational phenomena mentioned above), many proposals
for sensing with collective oscillations in BECs rely on ele-
ments of quantum sensing employing specific quantum states.
However, these highly nonclassical (e.g., squeezed) states are
typically also quite prone to noise and decoherence [18,39]. In
this work, we study the effects of decoherence caused by the
omnipresent process of three-body loss in BECs. In contrast
to other decoherence channels such as Landau or Beliaev
damping (see, e.g., [40]), this mechanism is not suppressed
when going to ultralow temperatures (as for Landau damping)
or energies (as for Beliaev damping).

II. THREE-BODY LOSS

Bose-Einstein condensates of ultracold atomic vapor are
not the true ground states, which would be solid. They are
metastable states which can be rather long lived because two
atoms alone cannot bind and form a molecule as energy
and momentum conservation forbid them to dispose of the
released binding energy. However, if a third atom is close
by (i.e., within the short interaction range) and carries away
the excess energy and momentum, this recombination pro-
cess can occur. Since the energy scales (set by the binding
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energy) are typically much larger than the characteristic en-
ergy scales of the ultracold BEC, effectively all three atoms
are lost from the BEC in such a process. Furthermore, the
associated length (interaction range) and timescales are much
shorter than those of a BEC, such that one may approximate
the recombination process as local in space and time. Thus, we
use the Born-Markov approximation and describe these three-
body loss processes via a Lindblad master equation (h̄ = 1)
(see also [41])

d�̂

dt
= −i[Ĥ0, �̂] + �

∫
d3r �̂3(r)�̂[�̂†(r)]3

− �

2

∫
d3r{[�̂†(r)]3�̂3(r), �̂}. (1)

Here Ĥ0 is the usual Hamiltonian governing the undisturbed
dynamics of the BEC and �̂ denotes its density matrix. The
Lindblad jump operators are given by third powers of the field
operators �̂(r) in second quantization, each one correspond-
ing to the annihilation of an atom at position r. Finally, � is
the bare loss rate.

In order to clearly distinguish different effects, we assume
scale separation, i.e., the characteristic length scales (e.g.,
size) of the condensate are supposed to be much larger than
the wavelengths of the phonon modes under consideration—
which, in turn, should be much longer than the typical length
scales of the atomic interactions and the three-body loss.

A. Mean-field approximation

As usual, we split the atomic field operator �̂(r) into the
macroscopically occupied mode â0 described by the conden-
sate wave function ψc(r) plus the field operator χ̂ (r) for all
other modes

�̂(r) ≈ ψc(r)â0 + χ̂ (r). (2)

This is followed by the Bogoliubov approximation, where the
field χ̂ (r) is treated as a small perturbation (in view of the
large occupation of the condensate mode).

Inserting split (2) into the Lindblad equation (1), the zeroth
order in χ̂ (r) yields the decay of expectation value of the
number of atoms in the condensate

dNc

dt
= d

dt
〈â†

0â0〉 ≈ −3�

∫
d3r |ψc(r)|6〈(â†

0)3â3
0〉

≈ −3�N3
c

∫
d3r |ψc(r)|6, (3)

where we have used the standard approximation of the con-
densate as a coherent state in the last step. This can be
reformulated in terms of the condensate density ρc(r) =
Nc|ψc(r)|2 which then leads to

d

dt
Nc = d

dt

∫
d3r ρc(r) ≈ −D

∫
d3r ρ3

c (r), (4)

where D = 3�. This is the usual equation describing three-
body loss in BECs with decay constant D (see, e.g., Sec.
5.4 of [42] and in [43,44]). For example, based on ex-
periments with rubidium atoms, the corresponding decay
constant was given as D ∼ 1.8 × 10−29 cm6 s−1 in [45] and
D ∼ 5.8 × 10−30 cm6 s−1 in [46] for different internal states

of the atoms. In the following, we use the second result
D ∼ 5.8 × 10−30 cm6 s−1 when we give numerical values for
rubidium BECs. In an experiment [47] with ytterbium, a decay
constant of D ∼ 4 × 10−30 cm6 s−1 was found.

As one may infer from the above equation (4), three-body
loss can be quite rare events in very dilute BECs, explaining
the comparably long lifetime of these metastable states. Still,
they are always present and will have profound consequences.

B. Phonon modes

The next-to-leading-order terms in χ̂ (r) describe the dy-
namics of the state �̂χ of the Bogoliubov quasiparticle
excitations (see also [48])

d�̂χ

dt
= −i[Ĥ0, �̂χ ] + 9�N2

c

∫
d3r|ψc(r)|4

×
(

χ̂ (r)�̂χ χ̂†(r) − 1

2
{χ̂†(r)χ̂ (r), �̂χ }

)
. (5)

If the Hamiltonian Ĥ0 is bilinear in the field operators χ̂ (r)
and χ̂†(r), this master equation preserves Gaussianity, i.e.,
maps initial Gaussian states �̂χ to final Gaussian states. This
will become important later, but at this point we do not restrict
our considerations to Gaussian states.

Note that χ̂†(r) and χ̂ (r) are not directly the creation and
annihilation operators for the quasiparticle excitations, they
are related via a Bogoliubov transformation

χ̂ (r) =
∑

I

âIφI (r) =
∑

I

(uI (r)b̂I + v∗
I (r)b̂†

I ). (6)

Here âI are the original atomic annihilation operators for
the modes φI (r) orthogonal to the condensate wave function
ψc(r), while b̂†

I and b̂I are the quasiparticle creation and anni-
hilation operators, respectively. The mode functions uI and vI

fulfill the stationary Bogoliubov–de Gennes equations and are
ortho-normalized as∫

d3r [u∗
I (r)uJ (r) − v∗

I (r)vJ (r)] = δIJ . (7)

As a result, the master equation (5) contains Lindblad oper-
ators b̂I corresponding to cooling ∝ uI as well as Lindblad
operators b̂†

I describing heating ∝ vI ; see also [48]. The per-
haps somewhat surprising effect of heating (even at zero
temperature) can intuitively be understood in the following
way: Due to the small but finite interaction between the atoms,
not all of them are in the macroscopically occupied mode
â0 described by the condensate wave function ψc(r), a small
fraction of them—referred to as the quantum depletion—is
“pushed” to higher modes φI (r), even in the quasiparticle
ground state. Now, if one of the atoms involved in a three-
body loss event belonged to the quantum depletion, removing
this atom would constitute a departure from the quasiparticle
ground state, i.e., an excitation.

III. DECOHERENCE

Now we are in the position to derive the decoherence
of the phonon modes due to three-body loss. Of course, to
actually solve the master equation (5), we have to specify the
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undisturbed Hamiltonian Ĥ0. In the following, we discuss
several examples.

A. Pure decay channel

As our first and most simple example, let us omit the undis-
turbed Hamiltonian Ĥ0 altogether. As a further simplification,
we focus on the decay channel, i.e., we keep only the Lindblad
operators b̂I and neglect all contributions ∝ vI . This will be a
good approximation for quasiparticles with wavelengths far
below the healing length ξ = 1/

√
8πasρc where as is the

s-wave scattering length. In this limit, we get the simple
equation

d�̂χ

dt
=

∑
I

γI

(
b̂I �̂χ b̂†

I − 1

2
{b̂†

I b̂I , �̂χ }
)

, (8)

with the mode-dependent decay rates

γI = 9�N2
c

∫
d3r|ψc(r)|4|uI (r)|2. (9)

For quantum enhanced sensing, interesting observables are the
quadratures, e.g., the positions X̂I = b̂†

I + b̂I (note that this
quantity is often defined with a factor of 1/

√
2). According

to Eq. (8), their variances evolve as

d

dt

〈
X̂ 2

I

〉 = −γI
〈
X̂ 2

I

〉 + γI . (10)

In addition to the usual decay term −γI〈X̂ 2
I 〉, we get a noise

term +γI stemming from the unavoidable quantum fluctua-
tions encoded in the commutator of b̂†

I and b̂I , as expected
from the fluctuation-dissipation theorem.

Now, for sensing applications which can be translated to
measuring the generalized position variable X̂I to high accu-
racy, a popular scheme of quantum enhanced sensing is to
prepare a squeezed state with reduced uncertainty 〈X̂ 2

I 〉in 	 1
in that direction1 as the initial state. Then Eq. (10) implies
that the variance 〈X̂ 2

I 〉 is doubled after a relatively short time
t ≈ 〈X̂ 2

I 〉in/γI . In other words, we find a comparably fast dete-
rioration of accuracy, which limits the maximum sensitivity:
The higher the desired accuracy, the more squeezing is neces-
sary, and thus the faster its deterioration.

B. Squeezing versus decay

Having found such a comparable fast smearing out of the
initially narrow variance 〈X̂ 2

I 〉in 	 1, one could try to counter-
act this process by continuously squeezing the state in order
to reduce 〈X̂ 2

I 〉 or keep it small. Thus, let us consider the
Hamiltonian

ĤS
0 = −i

∑
I

I

2
[(b̂†

I )2 − b̂2
I ] (11)

generating single-mode squeezing for all modes I with the
rates I . The resulting master equation

d�̂χ

dt
= −i

[
ĤS

0 , �̂χ

] +
∑

I

γI

(
b̂I �̂χ b̂†

I − 1

2
{b̂†

I b̂I , �̂χ }
)

(12)

1Of course, the uncertainty in the other direction 〈P̂2
I 〉in 
 1 would

be correspondingly larger.

can be solved for each mode I independently. The variances
can be obtained easily (see also [49,50])

d

dt

〈
X̂ 2

I

〉 = −(2I + γI )
〈
X̂ 2

I

〉 + γI . (13)

We see that maintaining small variances 〈X̂ 2
I 〉 	 1 requires

rather strong squeezing

I ≈ γI

2
〈
X̂ 2

I

〉 . (14)

These strong squeezing rates must be realized experimentally
by externally driving the system, which poses restrictions on
the potential of quantum enhanced sensing. As another point,
such a strong squeezing would decrease one variance 〈X̂ 2

I 〉 but
increase the other 〈P̂2

I 〉 and thus generate strong excitations.

C. Rotating-wave approximation

Let us now venture a few steps towards a more realistic de-
scription of phonon modes, especially those with wavelengths
larger or comparable to the healing length. To this end, we in-
clude the undisturbed (Bogoliubov–de Gennes) Hamiltonian
of the phonon modes

ĤR
0 =

∑
I

ωI b̂
†
I b̂I , (15)

with the phonon-mode eigenfrequencies ωI , and include the
previously omitted terms ∝ vI . Assuming that the phononic
frequency scales ωI ± ωJ are much faster than the Lindblad
dynamics, we may use the rotating-wave approximation and
arrive at

d�̂χ

dt
= −i

[
ĤR

0 , �̂χ

] +
∑

I

γ u
I

(
b̂I �̂χ b̂†

I − 1

2
{b̂†

I b̂I , �̂χ }
)

+
∑

I

γ v
I

(
b̂†

I �̂χ b̂I − 1

2
{b̂I b̂

†
I , �̂χ }

)
, (16)

where the cooling and heating terms are

γ u
I = 9�N2

c

∫
d3r|ψc(r)|4|uI (r)|2, (17)

γ v
I = 9�N2

c

∫
d3r|ψc(r)|4|vI (r)|2. (18)

Consistent with the rotating-wave approximation, we consider
the corotating position quadrature of a single mode X̂I (t ) =
b̂†

I e−iωI t + b̂I eiωI t , whose variance evolves as

d

dt

〈
X̂ 2

I (t )
〉 = −γ −

I

〈
X̂ 2

I (t )
〉 + γ +

I , (19)

where γ ±
I = γ u

I ± γ v
I . Consequently, the conclusions are

qualitatively the same as in the previous scenarios. As a main
difference, the cooling γ u

I and heating γ v
I terms both con-

tribute equally to the noise γ +
I while they act against each

other for the decay rate γ −
I .

D. Homogeneous condensates

In order to obtain more explicit expressions, we have to
specify the condensate wave-function. In the following, we
assume an approximately homogeneous condensate. Without
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loss of generality, we set the total chemical potential to zero
such that the condensate wave-function becomes (approxi-
mately) spatially and temporally constant ψc ≈ const. In this
case, the modes I can be labeled by their wave numbers k and
the frequencies are

ωk = |k|
2m

√
2

ξ 2
+ k2 = cs|k|

√
1 + 1

2
ξ 2k2. (20)

Again ξ = 1/
√

8πasρc is the healing length, which can also
be written as ξ = 1/

√
2mgρc in terms of the coupling constant

g = 4πas/m of the condensate atoms. Furthermore, cs denotes
the speed of sound given by 1/cs = √

2mξ or cs = √
gρc/m.

Apart from the quantization volume normalization, the
mode functions uk and vk are given by plane (propagating
or standing) waves with the Bogoliubov coefficients αk and
βk as prefactors, where αk = (σ−1

k + σk )/2 and βk = (σ−1
k −

σk )/2 with

σk = 4

√
1 + 2

ξ 2k2
. (21)

The damping constants (17) and (18) reduce to γ u
k = α2

kγ

and γ v
k = β2

kγ , respectively, where γ = 3Dρ2
c , which implies

γ −
k = (α2

k − β2
k )γ = γ and γ +

k = (α2
k + β2

k )γ � γ .
For large |k| 
 1/ξ , i.e., in the free-particle limit ωk →

k2/(2m), we find αk → 1 and βk → 0 as indicated above and
γ ±

k → γ . Instead for small |k| 	 1/ξ , i.e., in the phonon limit
ωk → cs|k|, both α2

k and β2
k grow as

√
2/(4ξ |k|). This leads

to γ +
k → γ (

√
2ξ |k|)−1, and the noise term is significantly

amplified.

E. Squeezed reference frame

Actually, one may understand the underlying dynam-
ics even without invoking the rotating-wave approximation
employed in Sec. III C. Considering a homogeneous con-
densate, we may use the Fourier expansion of χ̂ as our
mode decomposition in Eq. (6). Inserting this into the master
equation (5), we get

d�̂χ

dt
= −i[Ĥ0, �̂χ ] + γ

∑
k

(
âk�̂χ â†

k − 1

2
{â†

kâk, �̂χ }
)

, (22)

in terms of the original atomic creation and annihilation op-
erators â†

k and âk. For homogeneous condensates, we obtain a
k-independent decay rate γ from Eq. (5).

The atomic operators â†
k and âk are related to the phononic

quasiparticle operators b̂†
k and b̂k via the Bogoliubov trans-

formation (6), which corresponds to a unitary squeezing
operation Ûk for each mode2

âk = αkb̂k + βkb̂†
k = Û †

k b̂kÛk. (23)

2Using the mode functions exp{ik · r} for periodic boundary con-
ditions, Eq. (23) would read âk = αkb̂k + βkb̂†

−k. For reflecting
boundary conditions (e.g., Dirichlet or Neumann), one would use
sine or cosine functions instead where k and −k correspond to the
same mode, and thus we may write âk = αkb̂k + βkb̂†

k as in Eq. (23).

If we directly insert the above Bogoliubov transformation
âk = αkb̂k + βkb̂†

k into Eq. (22) and neglect all counter-
rotating terms such as b̂2

k, where the time evolution is
generated by Eq. (15), we recover Eq. (16) for homogeneous
condensates. In this form, the k-dependence of the Bogoli-
ubov coefficients αk and βk entails a k-dependence of the rates
γ u

k and γ v
k discussed after Eq. (21).

However, another representation can be more convenient:
Since the original atomic operators âk are basically the Lind-
blad jump operators in Eq. (22), we can use them as a basis
and express everything—including the Hamiltonian Ĥ0—in
terms of â†

k and âk instead of the phononic operators b̂†
k and

b̂k. Assuming that Ĥ0 is a bilinear function of the â†
k and âk

(or, equivalently, of the b̂†
k and b̂k) which does not couple the

different modes k with each other, its most general form reads

Ĥ0 =
∑

k

(
ω̃kâ†

kâk − i

2
̃k(â†

k )2 + i

2
̃∗

kâ2
k

)
. (24)

Note that, even if the Hamiltonian Ĥ0 was diagonal in terms
of the phononic operators b̂†

k and b̂k, i.e., had the form of
ĤR

0 in Eq. (15), it would still contain nonzero ̃k-terms in
the representation (24). One way to obtain them would be to
insert the inverse Bogoliubov transformation (23), i.e., b̂k =
ÛkâkÛ †

k , into the form b̂†
kb̂k. However, as the Bogoliubov

transformation (23) is precisely chosen in order to diagonal-
ize the original Bogoliubov–de Gennes Hamiltonian Ĥ0, we
can find those ̃k-terms directly in Ĥ0 when it is expressed
in terms of the atomic operators: Inserting the mean-field
split (2) into the atomic Hamiltonian Ĥ0 containing the inter-
action term (�̂†)2�̂2, we also get χ̂2 and (χ̂†)2 terms in the
effective Bogoliubov–de Gennes Hamiltonian which translate
into â2

k and (â†
k )2 contributions after a Fourier transform. In

this case, we would get constant ̃k = ̃ for a homogeneous
condensate.

In order to study the dynamics following from Eqs. (22)
and (24), we consider the expectation values of the number
operator 〈â†

kâk〉 and the anomalous average 〈â2
k〉 as well as its

complex conjugate. Their evolution equations read

d

dt
〈â†

kâk〉 = −̃k〈(â†
k )2〉 − ̃∗

k

〈
â2

k

〉 − γ 〈â†
kâk〉, (25)

and for the anomalous average

d

dt

〈
â2

k

〉 = −2iω̃k
〈
â2

k

〉 − 2̃k(〈â†
kâk〉 + 1) − γ

〈
â2

k

〉
. (26)

Introducing the vector w = (〈â2
k〉, 〈â†

kâk〉, 〈â2
k〉∗), this linear

system can be cast into the form ẇ + M · w = s with the
source s = −2(̃k, 0, ̃∗

k ) and the 3 × 3 matrix

M =
⎛
⎝γ + 2iω̃k 2̃k 0

̃∗
k γ ̃k

0 2̃∗
k γ − 2iω̃k

⎞
⎠, (27)

with the eigenvalues γ and γ ± 2
√

|̃k|2 − ω̃2
k. Thus, this

set of equations can be solved explicitly—incorporating the
results of the previous sections as limiting cases. For exam-
ple, for ̃k = ω̃k = βk = 0, we recover Eq. (10). Note that
the above matrix equation yields just the exponential decay
∝ exp{−γ t} of the expectation values 〈â†

kâk〉, 〈â2
k〉, and 〈â2

k〉∗;
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the noise term in Eq. (10) stems from the commutator of
the operators âk and â†

k when reexpressing the variance 〈X̂ 2
k 〉

as a function of those expectation values 〈â†
kâk〉, 〈â2

k〉, and
〈â2

k〉∗. This commutator represents the quantum fluctuations:
While the expectation values 〈â†

kâk〉, 〈â2
k〉, and 〈â2

k〉∗ tend to
zero under the influence of the decay channel, this is not true
for the variance 〈X̂ 2

k 〉, which tends to unity—respecting the
Heisenberg uncertainty principle.

In analogy, one may derive a closed set of equations for
the linear expectation values 〈â†

k〉 and 〈âk〉. Apart from the
Ĥ0-evolution, we obtain additional decay terms −γ 〈â†

k〉/2 and
−γ 〈âk〉/2. Note that we did not assume Gaussian states so far;
this will be the subject of the next section.

IV. GAUSSIAN STATES

In the following, we restrict our considerations to Gaussian
states �̂χ . To this end, we assume that the undisturbed quasi-
particle Hamiltonian Ĥ0 in Eq. (5) is—at least to a sufficiently
good approximation—given by a linear combination of terms
linear or bilinear in the operators b̂I and b̂†

I . Combining
these creation and annihilation operators in an operator-valued
pseudovector ζ̂I , the general structure of ĤGauss

0 is thus

ĤGauss
0 =

∑
IJ

ζ̂I�IJ ζ̂J +
∑

I

ζ̂IδI , (28)

where the block matrix �IJ contains the single-mode I and
multimode IJ squeezing rates as well as the single-mode fre-
quencies ωI and possible multimode rotations ωIJ , while the
δI terms generate coherent displacements. Note that the trans-
formations Ûk to the squeezed reference frame mentioned in
the previous section preserve this structure and just change the
parameters �IJ → �̃IJ and δI → δ̃I .

Under that condition (28), the Lindblad master equa-
tion (5) preserves Gaussianity, i.e., it maps initial Gaussian
states �̂χ (t = 0) to final Gaussian states �̂χ (t ), see also [51].
Gaussian states strongly simplify the analysis. They are
uniquely defined by their displacement vector

DI = 〈ζ̂I〉 (29)

and the covariance matrix

�IJ = 〈ζ̂I ζ̂
†
J + ζ̂

†
J ζ̂I〉 − 2DI D

∗
J , (30)

which are the generalization of the expectation values 〈b̂†
k〉

and 〈b̂k〉 as well as 〈b̂†
kb̂k〉, 〈b̂2

k〉, and 〈b̂2
k〉∗ (or, equivalently,

〈â†
k〉 and 〈âk〉 as well as 〈â†

kâk〉, 〈â2
k〉, and 〈â2

k〉∗) discussed in
the previous section. All higher-order expectation values can
be reduced to these two quantities (i.e., the first and second
cumulants) via a Wick-type expansion.

A. Parameter estimation

The simple structure of Gaussian states discussed above
facilitates several calculations which can be extremely hard
for general states. For instance, because general mixed quan-
tum states can be decomposed into pure states in many
different ways, it is often necessary to minimize over all
possible decompositions (which is referred to as convex
roof construction). One example are entanglement measures,

another example is the Quantum Fisher Information; see, e.g.,
[52–54]. This quantity measures how much a state changes
if we modify an external parameter ϑ which occurs in the
Hamiltonian Ĥ0, for example. Of course, this is relevant for
estimating this external parameter ϑ by measuring the state.

In terms of the ϑ-dependent displacement vector Dϑ and
covariance matrix �ϑ at a given time t , the Quantum Fisher
Information (for a Gaussian state) reads [55]

Fϑ = 1

2

Tr{(�−1
ϑ · �′

ϑ )2}
1 + P2

ϑ

+ 2
(P′

ϑ )2

1 − P4
ϑ

+2(D′
ϑ )∗ · �−1

ϑ · D′
ϑ . (31)

Here Pϑ = 1/
√

det �ϑ denotes the purity of the state and
primes denote derivatives with respect to ϑ . These deriva-
tives describe how much the state changes when modifying
the external parameter ϑ and the Quantum Fisher Informa-
tion (31) quantifies the potential to estimate this change by
measuring the state. The achievable accuracy is then given
by the Quantum Cramér-Rao bound [52–54] on the minimum
variance of ϑ

(�ϑ )2 � 1

Fϑ

, (32)

where we assumed a single measurement. Thus, for high ac-
curacy, a large Quantum Fisher Information (31) is necessary.
One way to achieve this would be to increase the derivatives
�′

ϑ , P′
ϑ , and D′

ϑ . However, this is limited by the experimen-
tally available coupling strengths etc. The idea of quantum
enhanced sensing3 is to modify the covariance matrix �ϑ

such that one or some of its eigenvalues are small and thus
changes �′

ϑ or D′
ϑ in that direction (i.e., the corresponding

eigenvectors) are enhanced by the multiplication with �−1
ϑ .

B. Decoherence

As one would already expect from the results of Sec. III,
the impact of decoherence tends to limit the potential of quan-
tum enhanced sensing. In the framework discussed above, this
manifests itself in the growth of the small eigenvalues of the
covariance matrix �ϑ . If we consider the pure decay channel
in Sec. III A or the evolution within the squeezed reference
frame in Sec. III E, we find the equation of motion for the
covariance matrix

d

dt
�ϑ = � · �ϑ + �ϑ · �†

−1

2
(� · �ϑ + �ϑ · �) + �. (33)

3In principle, one could also try to estimate ϑ via its impact on the
purity P′

ϑ , e.g., by having the constants γI in the Lindblad master
equation depend on ϑ . However, preparing such a coupling and
estimating ϑ in that way seems extremely challenging, and thus we
do not discuss this option here. The potential for enhanced sensing
could then be identified with the 1 − P4

ϑ in the denominator in (31),
which implies that the fraction could be very large for purities Pϑ

near unity (i.e., almost pure states). Since decoherence tends to
decrease the purity, it would also limit the enhancement potential for
this scheme.
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Here � represents the Hamiltonian evolution and is built from
the rates �IJ in Eq. (28), while � is a diagonal matrix contain-
ing all the decay rates γI . Thus, if uλ is an eigenvector of �ϑ

with a small eigenvalue λ, we find that the rate of change of the
projection of �ϑ onto that eigenvector uλ · �ϑ · uλ scales with
the small eigenvalue λ plus the noise term uλ · � · uλ. Since
� is a positive matrix (assuming that all γI are positive), we
see that this poses a quite general limitation of the achievable
accuracy.

For the rotating-wave approximation discussed in
Sec. III C, we find a very similar evolution equation

d

dt
�ϑ = −1

2
(�− · �ϑ + �ϑ · �−) + �+, (34)

where �± are again diagonal matrices containing the decay
rates γ ±

I in complete analogy to Eq. (19). Note that we did not
include the Hamiltonian evolution � since the above equation
refers to the rotating reference frame. As another difference to
the evolution equation (33), the decoherence does not drive
the system towards the ground state (where �ϑ would be
given by the identity matrix), but to the asymptotic state �∞ =
�+ · �−1

− corresponding to detailed balance; see Eq. (A20) in
Appendix A for the solution of (34). Apart from that, the main
conclusions remain unchanged.

V. SINGLE-MODE CASE

For a single mode, the most general pure Gaussian state
is a squeezed, displaced and rotated state, which can be ob-
tained from the ground state |0〉 via the unitary operations
Ŝ, D̂, and R̂ generated by the respective contributions to the
Hamiltonian ĤS = −i(b̂†)2/2 + H.c., ĤD = iδb̂† + H.c.,
and ĤR = ωb̂†b̂. Their symplectic representations are 2 × 2
matrices acting on the covariance matrix � and displacement
vector D, such as � → S(r) · � · S†(r) with the squeezing
matrix

S(r) =
(

cosh(r) − sinh(r)
− sinh(r) cosh(r)

)
, (35)

for the case of real  = r ∈ R. Taking the ground state |0〉
with � = 1 as the initial state, one finds

�(r) =
(

cosh(2r) − sinh(2r)
− sinh(2r) cosh(2r)

)
, (36)

with the two eigenvalues λ± = e±2r . Thus, for large squeez-
ing, say, e2r 
 1, one can enhance the sensitivity.

However, as explained above, this pure squeezed state is
very vulnerable to decoherence, which adds noise and thereby
turns it into a mixed state. For example, the evolution equation
(34) with the above state (36) as the initial state �0 can be
solved as

�(t ) = e−γ −t�0 + γ +

γ − (1 − e−γ −t )1. (37)

For short times t 	 1/γ −, we see that the small eigenvalue
λ− grows as

λ−(t ) = e−2r + γ +t − e−2rγ −t + O(t2). (38)

Since e−2r 	 1 and γ + � γ −, the growth term γ +t domi-
nates and the quantum enhanced sensitivity deteriorates after

FIG. 1. Sketch (not to scale) of the main idea of quantum en-
hanced sensing (with single-mode squeezing) in the displacement
scheme and its deterioration due to decoherence. Depicted are the
Wigner representations of the initial ground state (top left) and the
coherent state (top right) displaced in the X -direction X → X + δ

due to the interaction representing the measurement. However, if
this displacement δ is smaller than the initial quantum uncertainty
�X (radius of the blue circles), the coherent state (full blue circle
in top right diagram) cannot be distinguished unambiguously from
the initial ground state, i.e., the measurement is not conclusive.
To overcome this problem, one can start with an initial squeezed
state (middle left) with a reduced uncertainty �X such that the
displacement δ is larger than �X (middle right). In the presence
of decoherence, however, this reduced initial uncertainty �X grows
between initialization (bottom left) and final read-out (bottom right)
such that the state after the interaction (full blue ellipse in bottom
right diagram) can again not be distinguished unambiguously from
the state without this interaction (dashed blue ellipse in bottom
right diagram).

a short time t = O(e−2r/γ +). This goes along with a decay of
the purity P(t ) ≈ (1 + e2rγ +t )−1/2 on the same timescale.

A. Displacement scheme

In order to be more explicit, we have to specify how the
signal to be measured is coupled to the single mode under con-
sideration. Encoding the parameter ϑ to be estimated in a pure
displacement Dϑ into the direction uλ− where the variance
is small, the Quantum Fisher Information (31) simplifies to
Fϑ = 2|D′

ϑ |2λ−1
− (see Appendix B 1 for details). Thus, for the

initial pure state, the accuracy �ϑ would be enhanced by the
squeezing factor e−r . Adding noise, however, the uncertainty
rapidly grows as

�ϑ � 1√
Fϑ

= e−r

√
2|D′

ϑ | → e−r

√
2|D′

ϑ |
√

1 + e2rγ +t . (39)

Let us illustrate the main mechanism by means of a simple
example depicted in Fig. 1. The displacement Hamiltonian ĤD

does not affect the covariance matrix � at all, but just creates
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FIG. 2. Sketch (not to scale) of the main idea of quantum en-
hanced sensing (with single-mode squeezing) in the rotation scheme
and its deterioration due to decoherence in analogy to Fig. 1. The
left panels depict the Wigner representations of the initial squeezed
states. Without decoherence, the rotated squeezed state (solid blue
ellipse in top right panel) has little overlap with the state in the
absence of rotation (dashed blue ellipse in top right panel). With
decoherence, however, their overlap becomes much larger (bottom
right panel), and thus it is much harder to distinguish them. In the
squeezing scheme (Sec. V C), we get a qualitatively similar picture.

a displacement vector D. The impact of decoherence, on the
other hand, strongly affects the covariance matrix �, mainly
by increasing the small eigenvalue(s), while its influence on
the displacement vector D is very weak. Thus, we may con-
sider the two phenomena quite independently and arrive at
the sequence shown in Fig. 1. Here the small λ− and large
λ+ eigenvalues of the covariance matrix � are represented by
the minor and major semi-axes of the ellipses in the Wigner
representation. Thus, their area is a measure of the purity
(corresponding to the determinant of �).

B. Rotation scheme

By inspecting Eq. (31), we see that the impact of the
small eigenvalue λ− employed for quantum enhanced sensing
is even larger for the first term in Eq. (31), which scales
quadratically in λ−1

− . To exploit this scaling, one could en-
code the parameter ϑ in the covariance matrix, which can
be achieved by a rotation R̂, for example. The corresponding
mechanism is depicted in Fig. 2. For e2r 
 1, we obtain
(see Appendix B 2)

�ϑ � 1√
Fϑ

≈ e−2r
√

2 + e2rγ +t . (40)

C. Squeezing scheme

Finally, one can encode the signal ϑ also in a squeezing
operation itself. If we again start from a state squeezed in X
direction, as in Figs. 1 and 2, these figures already suggest that
encoding the signal ϑ into a squeezing in exactly the same X
direction (or in the orthogonal P direction) is not the best idea
for achieving quantum enhanced sensing. Instead, one should
apply a squeezing in a slanting direction (e.g., at ±45◦). Then,
for large initial squeezing er 
 1 and small signal squeezing
(i.e., small ϑ), we get qualitatively the same picture as in
Fig. 2 (a detailed calculation can be found in Appendix B 3).

D. Sensing continuously encoded parameters

Above, we considered the simplified situation where the
parameter ϑ is encoded in the initial state of the phonon field
before its open dynamics leads to deterioration of quantum
sensitivity. This corresponds to the case of fast encoding of
ϑ in comparison to the timescales given by 1/γ − and 1/γ +.
If the timescale of the free dynamics and the duration of
the encoding process are similar, we have to consider the
case of continuous encoding of ϑ , in principle. However,
for small values of ϑ and γ −

I t , the dynamics of the phonon
field differs from the case of instantaneous encoding by terms
proportional to products and higher powers of ϑ and γ −

I t .
Neglecting these higher order contributions, we recover the
above results.4 If the rate of change of the encoded parameter
ϑ is to be estimated, there exists an optimal measurement
duration depending on γ +.

E. Heisenberg limit

Note that, for large squeezing e2r 
 1, the small eigen-
value λ− = e−2r of the pure state scales with the inverse of the
number 〈n̂〉 of excitation quanta (phonons), which is given by
〈n̂〉 = sinh2(r). Thus, the accuracy �ϑ scales inversely pro-
portional to the number of phonons, which is usually referred
to as the Heisenberg limit—in contrast to the usual Poisson
limit �ϑ ∼ 1/

√〈n̂〉, which is also referred to as shot-noise
limit or standard quantum limit. However, the deterioration
of the Heisenberg limit is not caused by the decay of the
excitation quanta—which occurs on a rather long timescale
t = O(1/γ −). Instead, it is caused by adding noise, which
happens on a timescale t = O(e−2r/γ +), i.e., much faster (for
large squeezing).

Note that the Heisenberg scaling �ϑ ∼ 1/〈n̂〉 can also be
realized via the displacement scheme (39) if we do not just
use a strong squeezing to reduce λ− = e−2r , but also employ
a large displacement. Of course, a large displacement does
also imply a large number of phonons |Dϑ |2 ∼ 〈n̂〉 such that
the available signal |D′

ϑ | scales with
√〈n̂〉, giving the total

scaling �ϑ ∼ 1/〈n̂〉.
In both cases, the minimum uncertainty �ϑ is determined

by the Heisenberg limit �ϑ ∼ 1/〈n̂〉, as expected. Note that
the number of phonons 〈n̂〉 must be much smaller than the
total number Nc of atoms in the condensate for the linearized
quasiparticle description to apply.

VI. EXPERIMENTAL PARAMETERS

Let us provide a rough estimate of the characteristic
parameters. Assuming a uniform rubidium BEC with a den-
sity of ρc = 1014 cm−3 and the decay constant D ∼ 5.8 ×
10−30 cm6 s−1 [46] yields γ = 3Dρ2

c ∼ 0.2 s−1. Similarly, a
ytterbium BEC with D ∼ 4 × 10−30 cm6 s−1 [47] and the
same density gives γ ∼ 0.1 s−1. Making the condensates
more dilute ρc = 1013 cm−3 reduces γ by two orders of mag-
nitude and leads to longer inverse damping times between
500 s and 1000 s. These timescales limit the lifetime of the

4For the case of continuously encoded squeezing, detailed calcula-
tions can be found in Appendix B 4.
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condensate itself and of the phononic excitations, but do also
pose restrictions on quantum enhanced sensing. Note that the
noise rate γ + is even larger than the above values of γ .

A. Comparison to Landau and Beliaev damping

Let us compare the above values to other decoherence and
damping channels often discussed in BECs, i.e., Landau and
Beliaev damping. Landau damping corresponds to a process
where two quasiparticle excitations (i.e., atoms in excited
motional states) interact such that their energy and momentum
are combined into a single higher energetic quasiparticle leav-
ing the remaining atom as a condensate atom. It was initially
discussed in [56–58]. An expression for the damping constant
γ in a uniform BEC for general temperatures was derived in
[59,60]. As one would expect, Landau damping is suppressed
for low temperatures T (where only a few excitations are
present) and scales with T 4. Furthermore, it grows linearly
with the quasiparticle momentum. Assuming a low tempera-
ture of 200 pK and a dilute and fairly large (elongated) BEC
with size 200 μm and density ρc = 1013 cm−3, the associated
damping rate γ can be suppressed down to 10−5 s−1. In this
regime, it is negligible in comparison with the three-body-
loss—unless very high quasiparticle momenta are considered.

Beliaev damping corresponds to the scattering of a quasi-
particle excitation and a condensate atom leading to two
quasiparticle excitations that share the kinetic energy and
the momentum of the initial excitation. Because it does not
require a second quasiparticle excitation, it can also exist
at zero temperature—but it scales with the fifth power of
the quasiparticle momentum [60]. Thus, for low momenta,
Beliaev damping can be suppressed down to rates 10−9 s−1

(i.e., even more strongly than Landau damping), but it can
become dominant for larger momenta.

For higher temperatures and/or larger quasiparticle mo-
menta, Landau and Beliaev damping start to dominate in
comparison to three-body loss. However, their consequences
are completely analogous to the results discussed above: On
the linearized quasiparticle level, their impact is described by
the same effective master equation (16), just with adapted
decay rates γ±; see also [40] and Appendix D.

It should be stressed here that the above considerations
are based on the linearized quasiparticle picture. If too many
quasiparticles are present, higher-order nonlinearities may
become important and induce additional effects such as de-
phasing.

B. Example application: Gravity sensing

To give an intuition for the effect of decoherence in an ex-
perimental situation, we will present the sensing of oscillating
gravitational fields as an example application in the following.
Note that it is not our intention to give a full experimental
proposal, which requires several steps: First, one has to make
sure that the oscillating gravitational field changes the quan-
tum state of the probe (i.e., the condensate) enough to be
detectable in principle. Second, one has to find a way to
actually detect this change experimentally. Third, one has to
distinguish the measured signal from noise and background
processes. Here we mainly focus on the first step—if it cannot

be accomplished successfully, there is no need to consider the
further steps.

In [31] it has been theoretically investigated how the time-
dependent gravitational field of a small oscillating gold sphere
acts on a nearby BEC. In particular, it has been shown that
phonon modes respond to the gravitational field, especially if
the oscillation of the gravitational acceleration is on resonance
with a phonon mode. In that case (direct driving), the interac-
tion between the phonon mode and the gravitational field can
be represented by a displacement Hamiltonian ĤD. Starting in
the ground state (i.e., no initial squeezing), the displacement
is detectable (in principle) if it corresponds to an expecta-
tion value of the phonon number operator (in this mode) of
order unity. 5

As an explicit example, let us consider a cylindrical
ytterbium BEC of length L and diameter d , which is axially
oriented with respect to the source mass’s motion. To simplify
the comparison, we consider the same parameters as discussed
in [31]. Thus, we assume a rather large BEC, where L and
d both are approximately 300 μm, containing 2 × 108 con-
densed atoms. This corresponds to a rather low density of
1013 cm−3, for which the damping rates have already been
discussed above. If we consider a gold sphere of 200 g, os-
cillating with a frequency of 8 Hz and an amplitude of 2 mm
at an average distance of 3 mm from the source mass’s surface
to the BEC, the impact of the gravitational field on the phonon
mode with the wave vector k = (10π/L, 0, 0) pointing in
the axial direction, would lead to a detectable displacement
after 10 s.

For the displacement scheme, the fundamental uncertainty
for a measurement is given by Eq. (39). More explicitly, the
change of the displacement is proportional to the source mass.
Thus, in the absence of decoherence, an initial squeezed state
implies a scaling of the minimum detectable mass �m as
e−r . For example, for r = 1, r = 2, and r = 5 and the system
parameters above, this corresponds to a detectable mass of
about 70 g, 30 g, and 1 g, respectively.

In the ideal case, a squeezing of r = 5 corresponds to an
increase in sensitivity of more than two orders of magnitude.
Note that this corresponds to a mean phonon number of
〈n̂〉 = sinh2(r) ≈ 5.5 × 103, i.e., a highly excited state (with
a correspondingly large energy). Apart from the experimental
challenges to actually create (and detect) such a state, one
should carefully scrutinize the underlying approximations for
such a highly excited state, e.g., regarding the impact of non-
linearities (which might induce dephasing etc.).

Moreover, even with the small value of γ ∼ 10−3 s−1,
leading to γ +

k ∼ 10−2 s−1 for the specific mode under con-
sideration, the quantum enhancement of the sensitivity would
already be decreased to a factor 4 after 10 s. This corre-
sponds to a detectable mass of 50 g (instead of 1 g in the
ideal case).

As the change of displacement is proportional to the driv-
ing time t (see [31]) while the decrease in sensitivity due
to decoherence is proportional to the square root of t (for
large squeezing), the sensitivity still increases with driving

5Still, measuring a single phonon in a BEC is a nontrivial task; see,
e.g., the Conclusions section of [31] or [61].
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time—provided that the resonance condition can be main-
tained during that time and that the BEC is not disturbed too
much.

VII. CONCLUSIONS AND DISCUSSIONS

For the phonon modes of Bose-Einstein condensates in
ultracold atomic vapor, we studied the impact of decoher-
ence caused by the omnipresent process of three-body loss
on quantum enhanced sensing. In contrast to other effects
such as Landau and Beliaev damping, this process cannot
be suppressed by going to ultralow temperatures or energies.
Three-body loss can be suppressed by making the condensate
more dilute or by reducing the atomic interaction strength
[44,62], but this would also diminish other important quan-
tities such as the speed of sound or the total number of atoms
in the BEC. As a result, the overall dynamics of the BEC
would become slower or the available phase space (e.g., pos-
sible amount of squeezing and maximum number of phonons)
would shrink—which poses additional challenges for sensing
schemes.

Another way of suppressing three-body loss would be to
confine the BEC spatially, i.e., to make it effectively lower di-
mensional (see Appendix C for a detailed discussion). In that
case, a reduction of dimension to 1D can lead to a suppression
of the loss rate by several orders of magnitude for ultralow
temperatures in the weakly interacting Bogoliubov regime
[63–65] when the atomic density is kept constant, implying
the corresponding reduction of the number of atoms. In the
strongly interacting Tonks-Girardeau regime, the suppression
is much more significant and three-body loss can be reduced
very strongly. However, the restriction to the Tonks-Girardeau
regime leads to an upper bound on the atomic density for
a fixed 1D scattering length [65]. This implies an upper
bound on the number of atoms that can be confined in the
same trap.

It has been shown that controlling the environment may
lead to a partial retrieval of quantum enhancement in sensing
[66,67]. Therefore, the effect of three-body loss might be
limited by precisely monitoring dimer molecules and excess
atoms (see also [68]) even though this is experimentally very
challenging.

Depending on the squeezing parameter r employed for
quantum enhanced sensing, we found a rapid deteriora-
tion of precision on a timescale t = O(e−2r/γ +), which is
much faster than the decay of phonons on the timescale t =
O(1/γ −). This hierarchy of timescales is analogous to the
difference between relaxation time T1 and coherence time T2

known from quantum information theory, for example.
In principle, one could counteract the decoherence induced

growth of uncertainty by permanent squeezing. However, the
required squeezing rate  would be quite large  = O(e2rγ +)
and thus experimentally challenging. In addition, since this
squeezing operation should demagnify the direction uλ corre-
sponding to the small eigenvalue λ− = e−2r of the covariance
matrix, i.e., precisely the same direction as the signal to be
measured, there is the danger to reduce the signal as well,
which would be counterproductive. This can be understood
by inspecting Fig. 1, for example. In order to enhance the
sensitivity for measuring a displacement in X direction, one
would squeeze the initial state in that direction as well. How-
ever, in order to counteract the decoherence-induced growth
of uncertainty, one would also have to squeeze the final state
in the same direction, which would also demagnify the signal
to be measured. In addition, such a squeezing would also
generate further excitations, i.e., a larger number of phonons,
which pose further problems.

We would also like to stress that we considered general
bounds on the achievable accuracy based on the behavior of
the variances or the Quantum Fisher Information (31), but we
did not provide a concrete measurement scheme (which can
also be quite challenging experimentally). Nevertheless, our
general limits on the measurement time t and the squeezing r
should be taken into account for proposals involving quantum
enhanced sensing applications based on BECs.
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APPENDIX A: TIME EVOLUTION OF DISPLACEMENT VECTOR AND COVARIANCE MATRIX

In Eq. (16) we found that, in the rotating-wave approximation, the time evolution of the density matrix of the field χ̂ is given
by the master equation

d�̂χ

dt
= −i[Ĥ0, �̂χ ] +

∑
I

γ u
I

(
b̂I �̂χ b̂†

I − 1

2
{b̂†

I b̂I , �̂χ }
)

+
∑

I

γ v
I

(
b̂†

I �̂χ b̂I − 1

2
{b̂I b̂

†
I , �̂χ }

)
. (A1)

With Ĥ0 = ∑
I ωI b̂

†
I b̂I and γ ±

I = γ u
I ± γ v

I , the time evolution of expectation values of first- and second-order operators becomes

d〈b̂I〉
dt

= −iTr(b̂I [Ĥ0, �̂χ ]) + γ u
I Tr

(
b̂I

(
b̂I �̂χ b̂†

I − 1

2
{b̂†

I b̂I , �̂χ }
))

+ γ v
I Tr

(
b̂I

(
b̂†

I �̂χ b̂I − 1

2
{b̂I b̂

†
I , �̂χ }

))

= −iωI〈b̂I〉 + γ u
I 〈b̂†

I b̂2
I − (b̂I b̂

†
I b̂I + b̂†

I b̂2
I )/2〉 + γ v

I 〈b̂2
I b̂†

I − (b̂2
I b̂†

I + b̂I b̂
†
I b̂I )/2〉

= −(iωI + γ −
I /2)〈b̂I〉, (A2)
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d〈b̂2
I 〉

dt
= −iTr

(
b̂2

I [Ĥ0, �̂χ ]
) + γ u

I Tr

(
b̂2

I

(
b̂I �̂χ b̂†

I − 1

2
{b̂†

I b̂I , �̂χ }
))

+ γ v
I Tr

(
b̂2

I

(
b̂†

I �̂χ b̂I − 1

2
{b̂I b̂

†
I , �̂χ }

))

= −2iωI〈b̂I〉 + γ u
I

〈
b̂†

I b̂3
I − (

b̂2
I b̂†

I b̂I + b̂†
I b̂3

I

)
/2

〉 + γ v
I

〈
b̂3

I b̂†
I − (

b̂3
I b̂†

I + b̂I b̂
†
I b̂2

I

)
/2

〉
= −(2iωI + γ −

I )〈b̂2
I 〉, (A3)

d〈b̂†
I b̂I〉

dt
= −iTr(b̂†

I b̂I [Ĥ0, �̂χ ]) + γ u
I Tr

(
b̂†

I b̂I

(
b̂I �̂χ b̂†

I − 1

2
{b̂†

I b̂I , �̂χ }
))

+ γ v
I Tr

(
b̂†

I b̂I

(
b̂†

I �̂χ b̂I − 1

2
{b̂I b̂

†
I , �̂χ }

))

= γ u
I 〈b̂†2

I b̂2
I − b̂†

I b̂I b̂
†
I b̂I〉 + γ v

I 〈b̂I b̂
†
I b̂I b̂

†
I − (b̂†

I b̂2
I b̂†

I + b̂I b̂
†2
I b̂I )/2〉

= −γ −
I 〈b̂†

I b̂I〉 + γ v
I , (A4)

d〈b̂I b̂
†
I 〉

dt
= d〈b̂†

I b̂I〉
dt

= −γ −
I 〈b̂†

I b̂I〉 + γ v
I = −γ −

I 〈b̂I b̂
†
I 〉 + γ u

I , (A5)

and for n �= m

d〈b̂†
I b̂J〉

dt
= −(i(ωJ − ωI ) + (γ −

I + γ −
J )/2)〈b̂†

I b̂J〉,

d〈b̂I b̂J〉
dt

= −(i(ωJ + ωI ) + (γ −
I + γ −

J )/2)〈b̂I b̂J〉.

Defining the rotating frame

〈b̂I〉 = 〈b̂I〉eiωI t , (A6)〈
b̂2

I

〉 = 〈b̂I〉e2iωI t , (A7)

〈b̂†
I b̂I〉 = 〈b̂†

I b̂I〉, (A8)

〈b̂†
I b̂J〉 = 〈b̂†

I b̂J〉ei(ωJ −ωI )t , (A9)

〈b̂I b̂J〉 = 〈b̂I b̂J〉ei(ωJ +ωI )t , (A10)

the differential equations become

d〈b̂I〉
dt

= −γ −
I

2
〈b̂I〉,

d
〈
b̂2

I

〉
dt

= −γ −
I

〈
b̂2

I

〉
, (A11)

d〈{b̂†
I , b̂I}+〉
dt

= −γ −
I 〈{b̂†

I , b̂I}+〉 + γ +
I ,

and for n �= m

d〈b̂†
I b̂J〉

dt
= −γ −

I + γ −
J

2
〈b̂†

I b̂J〉, (A12)

d〈b̂I b̂J〉
dt

= −γ −
I + γ −

J

2
〈b̂I b̂J〉. (A13)

The solutions to these differential equations are easily found as

〈b̂I〉 = e−γ −
I t/2〈b̂I〉0, (A14)

〈b̂2
I 〉 = e−γ −

I t 〈b̂2
I 〉0, (A15)

〈{b̂†
I , b̂I}+〉 = e−γ −

I t (〈{b̂†
I , b̂I}+〉0 − γ +

I /γ −
I ) + γ +

I /γ −
I , (A16)
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and for n �= m

〈b̂†
I b̂J〉 = e−(γ −

I +γ −
J )t/2〈b̂†

I b̂J〉0, (A17)

〈b̂I b̂J〉 = e−(γ −
I +γ −

J )t/2〈b̂I b̂J〉0. (A18)

We define the operator valued vector ξ̂ = (b̂1, b̂†
1, . . . , b̂I , b̂†

I , . . . )Tp containing all creation and annihilation operators of the
quasiparticle field χ̂ and ξ̂ † = (b̂†

1, b̂1, . . . , b̂†
I , b̂I , . . . )Tp. In this basis, the time evolution of the displacement vector and

covariance matrix become in the corotating frame

D(t ) = R∗(t ) · 〈ξ̂ 〉t = e−�−t/2 · D(0), (A19)

�(t ) = R∗(t ) · 〈{ξ̂ − D(t ), (ξ̂ − D(t ))†Tp}+〉t · R(t ) = e−�−t/2 · (�(0) − �∞) · e−�−t/2 + �∞, (A20)

where �∞ = �+ · �−1
− and the diagonal matrices �± and R(t ) are defined as (�±)2I−1 = (�±)2I = γ ±

I and R(t )2I−1 = e−iωI t ,
R(t )2I = eiωI t , respectively. Equation (A20) is the solution of Eq. (34).

APPENDIX B: PARAMETER ESTIMATION WITH A SQUEEZED VACUUM STATE

For a single-mode squeezed state

�̂χ (0) = ŜI (ζ )�̂χ,vacŜI (ζ )†, (B1)

where ŜI (ζ ) = exp((ζ ∗b̂2
I − ζ b̂†2

I )/2) is the squeezing operator with ζ = re2iθ , we have

�(t )I = e−γ −
I t SI (ζ ) · SI (ζ ) + γ +

I

γ −
I

(1 − e−γ −
I t )I, (B2)

where

SI (ζ ) =
(

cosh(r) −e2iθ sinh(r)
−e−2iθ sinh(r) cosh(r)

)
(B3)

is the single-mode squeezing operator’s action on mode I . Without loss of generality, we assume θ = 0 in the following.

1. Estimation of displacement

We consider an additional displacement D̂I (μ), where μ = |μ|eiϕμ . This does not change the covariance matrix, and, for a
squeezed vacuum state, the displacement vector simply becomes

D(t )I,μ = (μ,μ∗)Tp. (B4)

The quantum Fisher information for the estimation of |μ| is then given as

F|μ|(t ) = 2
(
D(t )′I,μ

)∗Tp · �I (t )−1 · D(t )′I,μ, (B5)

where

D(t )′I,μ = d

dε
D(t )I,(|μ|+ε)eiϕμ

∣∣∣
ε=0

= (eiϕμ, e−iϕμ )Tp. (B6)

Again, without loss of generality, we assume θ = 0. In the eigenbasis of �(t )I , we find

D(t )′ eb
I,μ =

√
2(cos(ϕμ),−i sin(ϕμ))Tp , (B7)

and we find that the QFI is maximized for ϕμ = 0 leading to

F|μ|(t ) = 4λ−(t )−1. (B8)

We find that quantum enhanced sensing of the amplitude of displacement with a squeezed vacuum state has a sensitivity that
scales at most with 1/

√〈n̂〉.
Let us assume that we want to estimate the phase of a displacement. In that case,

D(t )′I,μ = d

dε
D(t )I,|μ|ei(ϕμ+ε)

∣∣∣
ε=0

= |μ|(ieiϕμ,−ie−iϕμ )Tp (B9)

and

D(t )′ eb
I,μ = −

√
2|μ|(sin(ϕμ), i cos(ϕμ))Tp. (B10)

We find that the QFI is maximized for ϕμ = π/2 leading to

F|μ|(t ) = 4|μ|2λ−(t )−1. (B11)
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Now, the corresponding sensitivity scales with the product of the square root of the number of phonons in the initial state and the
square root of the number of phonons |μ|2 created by the signal. This can be associated with Heisenberg scaling if the number
of squeezed phonons sinh2(r) is of the same order as |μ|2 and a small signal is enhanced to achieve the amplitude |μ|.

2. Estimation of a rotation angle

We apply an additional rotation R̂I (ϑε ) = exp(−iϑε b̂†
I b̂I ) of a Gaussian state acts on the covariance matrix as

�(t )I,ϑε
= RI (ϑε ) · �(t )I · RI (ϑε )∗Tp,

where RI (ϑε ) = diag(e−iϑε , eiϑε ). For the QFI, we have

Fϑε
(t ) = 1

2(1 + P(t )2)
Tr

[(
�(t )−1

I,ϑε
�(t )′I,ϑε

)2]
, (B12)

where

�(t )−1
I,ϑε

= RI (ϑε ) · �(t )−1
I · RI (ϑε )∗Tp, (B13)

�(t )′I,ϑε
= d

dϑε

�(t )I,ϑε
= � · RI (ϑε ) · �(t )I · RI (ϑε )∗Tp − RI (ϑε ) · �(t )I · RI (ϑε )∗Tp · �

= � · �(t )I,ϑε
− �(t )I,ϑε

· �, (B14)

and � = diag(−i, i). Also, we find

Tr
[(

�(t )−1
I,ϑε

�(t )′I,ϑε

)2] = Tr
[(

�(t )−1
I (� · �(t )I − �(t )I · �)

)2]
, (B15)

which means that the estimation of phase with a squeezed state does not depend on the base point ϑε . In the eigenbasis of
�(t )I , we find

�eb = i

(
0 1
1 0

)
and (B16)

[� · �(t )I − �(t )I · �]eb = i[λ−(t ) − λ+(t )]

(
0 −1
1 0

)
, (B17)

�(t )−1 eb
I [� · �(t )I − �(t )I · �]eb = i[λ−(t ) − λ+(t )]

(
0 −λ−(t )−1

λ+(t )−1 0

)
. (B18)

Therefore,

Tr
[(

�(t )−1
I [� · �(t )I − �(t )I · �]

)2] = 2
[λ−(t ) − λ+(t )]2

λ−(t )λ+(t )
. (B19)

We obtain for the QFI6

Fϑε
(t ) = [λ−(t ) − λ+(t )]2

λ−(t )λ+(t ) + 1
. (B20)

For e−2r 	 1 and γ ±
I t 	 1, we obtain

�ϑε = 1√
Fϑε

≈ e−2r
√

2 + e2rγ +t . (B21)

3. Estimation of the squeezing amplitude

Now, let us apply an additional squeezing ŜI (ν), where ν = se2iφν and bound the sensitivity for estimating the parameter s.
The action on the covariance matrix is

�(t )I,ν = SI (ν) · �(t )I · SI (ν). (B22)

The quantum Fisher information for the estimation of s = |ν| is

Fs(t ) = 1

2[1 + Pν (t )2]
Tr

[(
�(t )−1

I · �(t )′I,ν
)2]

, (B23)

6We recover the result of [55] Eq. (16) with α = 0, λ−(t ) = 1/(P0σ
2), and λ+(t ) = σ 2/P0.
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where

�(t )′I,ν = d

dε
�I,εeiϕν (t )

∣∣∣
ε=0

= Ȳ(φν ) · �(t )I · SI (ν) + SI (ν) · �(t )I · Ȳ(φν )

= Ȳ(φν ) · SI (ν)−1 · �(t )I,ν + �(t )I,ν · SI (ν)−1 · Ȳ(φν ) (B24)

and

Ȳ(φν ) = d

ds
S(seiφν )

∣∣∣∣
s=0

=
(

sinh(s) −e2iφν cosh(s)
−e−2iφν cosh(s) sinh(s)

)
. (B25)

We can rewrite the QFI as

Fφν
(t ) = 1

[1 + Pν (t )2]

(
Tr[(Ȳ(φν ) · SI (ν)−1)2] + Tr

[
Ȳ(φν ) · SI (ν)−1 · �(t )I,ν · SI (ν)−1 · Ȳ(φν ) · �(t )−1

I,ν

])
= 1

[1 + Pν (t )2]

(
2 + Tr

[
SI (ν)−1 · Ȳ(φν ) · �(t )I · Ȳ(φν ) · SI (ν)−1 · �(t )−1

I

])
. (B26)

We transform into the eigenbasis of �(t )I such that

�(t )eb
I = e−γ −

I t

(
e−2r 0

0 e2r

)
+ γ +

I

γ −
I

(1 − e−γ −
I t )I =:

(
λ−(t ) 0

0 λ+(t )

)
, (B27)

Ȳ(φν )eb · SI (ν)−1 eb = SI (ν)−1 eb · Ȳ(φν )eb =
(− cos(2φν ) −i sin(2φν )

i sin(2φν ) cos(2φν )

)
, (B28)

and

SI (ν)−1 · Ȳ(φν ) · �(t )I · Ȳ(φν ) · SI (ν)−1 · �(t )−1
I

=
(

λ−(t )+λ+(t )+[λ−(t )−λ+(t )] cos(4φI )
2λ−(t ) i [λ−(t )−λ+(t )] sin(4φI )

2λ+(t )

−i i[λ−(t )−λ+(t )] sin(4φI )
2λ−(t )

λ−(t )+λ+(t )−[λ−(t )−λ+(t )] cos(4φI )
2λ+(t )

)
. (B29)

Finally, we find

Fs(t ) = λ−(t )2 + 6λ−(t )λ+(t ) + λ+(t )2 − [λ−(t ) − λ+(t )]2 cos(4φν )

2[λ−(t )λ+(t ) + 1]
. (B30)

We see that quantum enhancement is maximized for φν = ±π/4 + m π/2 with integer m. In that case, we obtain for the QFI

Fs(t ) = [λ−(t ) + λ+(t )]2

λ−(t )λ+(t ) + 1
≈ λ+(t )

λ−(t ) + λ+(t )−1
, (B31)

which is approximately the same as the result for estimation of rotation above.

4. Continuous squeezing of a squeezed probe state

We consider the continuous squeezing of an initial probe state by

ĤS = −i
(
e2iφ b̂†2

I0
− e−2iφ b̂2

I0

)
/2, (B32)

for which the time evolution of the corotating covariance matrix is given as

�(t )I, = � + e−γ −
I t S(t ) · [�(0)I − �] · S(t ), (B33)

where �(0)I = SI (ζ )SI (ζ ) and

S(t ) =
(

cosh(t ) −e2iφ sinh(t )
−e−2iφ sinh(t ) cosh(t )

)
(B34)

and

� = − γ +
I

(2)2 − (γ −
I )2

(
γ −

I −2e2iφ

−2e−2iφ γ −
I

)
. (B35)

Now, we consider the estimation of . For the corresponding QFI, we find

F(t ) = 1

2(1 + P(t )2)
Tr

[(
�(t )−1

I,�(t )′I,
)2]

, (B36)
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where

�(t )′I, = d

d
�(t )I,

∣∣∣∣
=0

= �′
 − e−γ −

I t S(t ) · �′
 · S(t ) (B37)

+te−γ −
I t [Y(t ) · (�(0)I − �) · S(t ) + S(t ) · (�(0)I − �) · Y(t )]

and

Y(t ) =
(

sinh(t ) −e2iφ cosh(t )
−e−2iφ cosh(t ) sinh(t )

)
. (B38)

At the base point  = 0, we obtain

�(t )′I,|=0 = 2
γ +

I

(γ −
I )2

(1 − e−γ −
I t )Y0 + te−γ −

I t

[
Y0 ·

(
�(0)I − γ +

I

γ −
I

I

)
+

(
�(0)I − γ +

I

γ −
I

I

)
· Y0

]

= 2
γ +

I

(γ −
I )2

[(1 − e−γ −
I t ) − γ −

I t e−γ −
I t ]Y0 + te−γ −

I t [Y0 · �(0)I + �(0)I · Y0], (B39)

where

Y0 =
(

0 −e2iφ

−e−2iφ 0

)
. (B40)

For γ −
I t 	 1, we find that the first term in Eq. (B39) vanishes and

�(t )′I,
∣∣
=0

≈ t [Y0 · �(0)I + �(0)I · Y0]. (B41)

since

�(t )−1
I,=0 = �(t )−1

I . (B42)

Finally, we find

F(t ) = t2 λ−(t )2 + 6λ−(t )λ+(t ) + λ+(t )2 − [λ−(t ) − λ+(t )]2 cos(4φν )

2[λ−(t )λ+(t ) + 1]
, (B43)

which is equivalent to the QFI for the measurement of the amplitude of instantaneous squeezing multiplied by t2. It is maximized
for φν = ±π/4 + m π/2 with integer m leading to

F(t ) = t2 [λ−(t ) + λ+(t )]2

[λ−(t )λ+(t ) + 1]
, (B44)

recovering the expression for instantaneous squeezing by setting s = t and taking into account that F(t ) = Fs(t )| ds
d

|2.

APPENDIX C: THREE-BODY LOSS IN LOWER
DIMENSIONS

In the main text, we have considered only three-
dimensional BECs. However, the rate of three-body loss
depends on the dimensionality of the Bose gas. Three-body
loss in one-dimensional BECs has been investigated theoreti-
cally, for example, in [64,69] and experimentally, for example,
in [63,64]. In [63], the three-body decay constant D is denoted
as K1D

3 [e.g., compare [63] Eq. (1) with our Eq. (4)]. There 1D
Bose gases of rubidium in the Bogoliubov regime are inves-
tigated, and it is found that K1D

3 ≈ 1.2(7) × 10−30 cm6 s−1,
which they compare to a measurement of K3D

3 to find a
seven-fold reduction of the decay constant from 3D to 1D.
In [64] the decay constant appears as D = 3K (3)g(3) (see the
rate equation in the third paragraph in the left column on
page 2), where K (3) incorporates the three-body physics, e.g.,
the probability of dimer formation in a three-body scattering
process, and g(3) is the three-body correlator of the Bose gas,
which crucially depends on the geometry of the confinement
or trap. Figure 3(a) of [64] shows experimental values for
K (3)g(3) for Bose gases of Cs between 10−30 cm6 s−1 and

10−29 cm6 s−1 for a wide range of scattering lengths (tuned
by a Feshbach resonance). This gives a decay constant D
of about the same order of magnitude as the one we con-
sidered for Rb and Yb above. In particular, the results of
[64] show at least for Cs, that the decay constants in three
dimensions and one dimension are close to each other in the
low weakly interacting Bogoliubov regime that we are consid-
ering, but the 1D decay constant may be reduced significantly
in comparison to the 3D decay constant for larger scattering
lengths.

It is reasonable to assume that K (3) does not depend on the
dimensions of the Bose gas as long as non of the dimensions
of the confinement is smaller than the scattering length or the
extension of the dimer created in the process. For Rb-87, a
scattering length of ascatt ≈ 98a0 has been reported in [70],
where a0 ≈ 5 × 10−11 m is the Bohr radius. The scattering
length of Yb-168 can be found in [71] and leads to an interac-
tion constant of approximately ascatt ≈ 250a0. Therefore, for
confinement length scales of the order of 100 nm and above,
K (3) can be assumed to be the same for Bose gases of Rb and
Yb in 3D, 2D, and 1D.
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FIG. 3. Total damping constant γ −
k (blue solid line) and the total

noise constant γ +
k (green dashed line) are plotted as functions of

|k|L/π , where L is the length of the elongated direction of the cuboid
BEC, based on the parameters mentioned in the text. For low mo-
menta, the k-independent γ3b due to three-body loss dominates. For
higher quasiparticle momenta, Beliaev damping starts to dominate
due to its proportionality to |k|5. In the presented regime of very
low temperatures, Landau damping is completely suppressed. The
difference between γ −

k and γ +
k is strongly pronounced for small

momenta where |αk| becomes large.

Theoretical predictions for g(3) in 1D and its temperature
dependence were given in [65]. Figure 1 of [65] shows g(3)

for different temperatures as a function of the dimensionless
coupling constant γ . In the weak coupling Bogoliubov regime
γ � 1, it is found that the value of the correlator at zero
temperature differs from that for large temperatures by about
one to two orders of magnitude. When γ � max(1,

√
T/TD)

the Tonks-Girardeau regime is reached, where T is the tem-
perature, TD = h̄2n2/(2mkB), kB is the Boltzmann constant, m
is the atomic mass, and n = Na/L is the 1D density of the
Bose gas. In the Tonks-Girardeau regime, g(3) vanishes which
leads to vanishing of the decay constant and thus, vanishing
three-body loss. However, γ scales with the inverse of the
atom density [65], and therefore, the restriction to the Tonks-
Girardeau regime leads to a bound on the number of atoms.

For 2D weakly interacting Bose gases, it was predicted
in [72–74] that the breathing mode of the whole gas would
be undamped. A very low damping of that mode was exper-
imentally observed in [75]. A small damping due to vortex
collisions was predicted later in [76].

APPENDIX D: BELIAEV AND LANDAU DAMPING

When the Hamiltonian Ĥ0 is expanded based on the split
(2), third- and fourth-order terms in the field operator χ̂ appear
implying interactions that we neglected so far. In particu-
lar, the third-order terms lead to the damping effects called
Landau damping and Beliaev damping that can have signif-
icant effects on the state of the field χ̂ . In Landau damping,
two quasiparticle excitations (i.e., atoms in excited motional
states) interact such that their energy and momentum are
combined into a single higher energetic quasiparticle leaving
the second quasiparticle as a condensate atom. It was initially
discussed in [56–58]. An expression for the damping constant
γk in a uniform BEC for general temperatures was derived in
[59,60].

In [59] an expression for the damping constant of Landau
damping γLa in a uniform BEC for quasiparticle energies
h̄ωn 	 kBT was given as

γ La
k = 2

√
π h̄|k|a2

scattρ0

m
FLa, (D1)

where

FLa = 8
√

π

∫ ∞

0
dx(ex − e−x )−2

(
1 − 1

2u
− 1

2u2

)2

, (D2)

and u =
√

1 + 4(kBT/μ)2x2. For temperatures T such that
kBT 	 μ, where μ = mc2

0 is the chemical potential and c0 =
1/(

√
2mζ ) is the speed of sound of the BEC, and, the Landau

damping rate becomes [60]

γ La
k = 3π3

40

|k|(kBT )4

ρ0 h̄3mc4
0

. (D3)

The Landau damping rate is proportional to the temperature’s
fourth power. Therefore, Landau damping can be decreased
significantly by lowering the temperature further once the low
temperature regime kBT 	 μ is reached.

Beliaev damping is the scattering of a quasiparticle and
a condensate atom leading to two quasiparticle excitations
that share the kinetic energy and the momentum of the initial
quasiparticle. The corresponding damping constant for uni-
form BECs is given as [60]

γ Be
k = γ Be,0

k

[
1 + 60

∫ 1

0
dx

x2(x − 1)2

e
h̄ωk
kBT x − 1

]
, (D4)

where

γ Be,0
k = 3

640π

h̄|k|5
mρ0

(D5)

is the Beliaev damping constant at zero temperature. To obtain
Eq. (D4), we assumed that the quotient of the atom density of
the BEC and total atom density including the thermal cloud is
close to one. This is the case for temperatures much smaller
than the critical temperature of the BEC [77].

In [40] the effect of Landau damping and Beliaev damping
has been investigated and a master equation for the quasi-
particle field’s state has been derived that is very similar to
the one we obtained for three-body loss here. The difference
is modified damping constants and an additional term that
corresponds to the inverse process of the second term in
Eq. (16), in which a quasiparticle in mode n is created from
the condensate. For this term to be present, there has to be a
bath of quasiparticles that can interact in the inverse processes
of Landau and Beliaev damping. Therefore, this is an effect
of finite temperature. In particular, it leads to thermalization
of the modes. In contrast, for the three-body loss process, we
assumed that molecules and highly excited atoms are removed
from the system quickly enough to consider the corresponding
sectors as baths in the vacuum state, i.e., zero temperature.
Therefore, the additional term in the master equation obtained
in [40] does not appear here.

On the level of Gaussian states, combining all pro-
cesses leads to a modification of the constants γ u

k and γ v
k ,
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where γ u
k contains the spontaneous and stimulated annihi-

lation processes and γ v
k contains the creation processes due

to the baths. Then the time evolution including three-body
loss, Beliaev damping, and Landau damping is still given
by Eq. (34). Assuming thermal baths with delta correla-
tions for Beliaev and Landau damping, we may write γ u

k =
|αk|2γ3b + (N̄k + 1)(γL + γB) and γ v

k = |βk|2γ3b + N̄k(γL +
γB), where N̄k is the average thermal occupation num-
ber of the mode k and γL and γB are the single-particle
(temperature-dependent) damping constants of Landau damp-
ing and Beliaev damping, respectively. For this case, we find
γ −

k = γ3b + γL + γB and γ +
k = (2|αk|2 − 1)γ3b + (2N̄k + 1)

(γL + γB).

In the following, we will give a few numbers for the
damping constants and compare to the effect of three-body
loss in different regimes. For an elongated cuboid BEC of
length L = 200 μm and aspect ratio 1/3, a number of Na =
107 atoms corresponds to a density of 1013 cm−3 corre-
sponding to γ3b = 0.2 s−1 and a speed of sound c0 ≈ 6 ×
10−4 ms−1 for Rb. We assume a very low temperature of
200 pK. Then, we find γ La

k ≈ 5 × 10−6|k|L/π s−1 and γ Be
k ≈

1 × 10−9(|k|L/π )5 s−1 for a BEC of Rb atoms. This means
that Landau damping is completely suppressed and Beliaev
damping is suppressed for small quasiparticle momenta. The
total damping constant γ −

k and the total noise constant γ +
k are

shown in Fig. 3.
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